
EE109 Lab 1: USB Serial UART

 Page 1 of 4

EE109 Lab 1: USB Serial UART

Overview: This lab is designed to compare the performance of a hardware buffered serial output UART
to that of a non-buffered, software driven one. For Part A of the lab you will implement a simple system
to output a stream of 1s and 0s under software control. For Part B you will modify this to include a
hardware buffer to (hopefully) improve performance. The performance will be measured by the
maximum rate at which your design can send 2048 bits without having the time between any two
transitions differ by more than 6% from the average of the first 8 transmissions.

Contents
 Part A System Overview
 Part B System Overview
 Sample Files Overview
 Performance
 Additional Write Up Material

Revisions
 19-March-2004: Version 1.0, by David Black-Schaffer

24-March-2004: Version 1.1, added more hints and more clearly specified required
measurements.
3-April-2004: Version 1.2, updated the SR counter discussion to include more detail

EE109 Lab 1: USB Serial UART

 Page 2 of 4

Part A System Overview

The architecture for Part A is specified above. You are to implement a Windows application that

will send out a stream of single-byte USB packets with one 1 or 0 in each. You should configure the
FX2 to accept these packets over USB Endpoint 2 OUT and pass them on to FIFO 0 where the FPGA
will read them out and send the one bit on to an LED for display. It should also send this data to the
provided lab1_checker module, which will be responsible for averaging the first 8 transitions and
comparing subsequent transitions to them. If any subsequent trans itions are more than 6% longer or
shorter than the average of the first 8 it will report an error by turning on an LED.

Part B System Overview

The architecture for Part B is less clearly specified. You are expected to implement a Windows

application that will send out a stream of n-byte USB packets, where each bit will be used for generating
the serial data output stream. You should read these bytes into some sort of a buffer on the FPGA and
then use a shift register to shift them out one at a time. The rate at which you shift them out will be
controlled by a hardware counter, whose speed you will vary to see how fast your system can go. Your
job is to try to get that rate as high as possible by designing a good buffer. (Note that you should
systematically adjust the rate of the counter that controls the hardware shift register to find the speed at
which your throughput is maximized. You can do this most efficiently by using a binary tree to test the
various speeds. For example: you might start at 50MHz and determine that is too fast. Then try half of
that, or 25MHz, which may work fine. If it does then your top speed will be 25MHz because there is no
way to divide down a 50MHz clock without a DLL to get anywhere between 50 and 25. If 25MHz does
not work, then again decrease by half again and try it at 12.5MHz. Keep dividing incrementally
adjusting your speed by half the last step until you get reasonably close to the maximum speed you can
sustain.)

Since all our logic will be synchronous to the 50MHz system clock you will need to create a

hardware counter that will generate SR_enable signal that tells the SR when to shift a bit. This is the
piece you will need to adjust to see how fast you can go. Building such a counter is very simple, but you

 Lab1Streamer.exe
Application

Windows PC

USB Driver - CyAPI

 FX2 Configuration
Firmware

FX2 USB Chip

Serial Interface Engine
FIFO Buffers

 Lab1_checker pulse
width measuring module

Xilinx FPGA

Top-level
USB Reading

FSM

Pulse width error

LED Output
USB

async
FSM

 Lab1ByteStreamer.exe
Application

Windows PC

USB Driver - CyAPI

 FX2 Configuration
Firmware

FX2 USB Chip

Serial Interface Engine
FIFO Buffers

 Lab1_checker pulse
width measuring module

Xilinx FPGA

FSMs

Pulse width error

LED Output

Buffer USB
async
FSM

EE109 Lab 1: USB Serial UART

 Page 3 of 4

must remember that its output is only to enable your SR. The SR, as with all your other logic, must be
clocked off your global 50MHz clock. Here is an example of building such a simple counter:

wire sr_enable;
wire [15:0]sr_count;

dffre #(16) my_sr_enable_counter (
 .clk(clk),
 .en(enable),
 .r(reset || sr_enable),
 .d(sr_count + 16’d1),
 .q(sr_count)
);

`define DIVIDER 16’d3

assign sr_enable = (sr_count == `DIVIDER) ? 1’b1 : 1’b0;

// Then your SR would be connected as:
sr my_sr (
 .clk(clk), // REMEMBER: we always clock off the global clk
 .shift_en(sr_enable), // Use an enable to try different speeds
 // Other connections
);

You can either build your own SR (easy) or use a CoreGen module if you’d prefer. Remember
that drawing out a block diagram of how you want it to work first will make it easier to figure out if
you’re not already completely comfortable with how a SR functions.

Some comments on the buffer design: Obviously once you have the shift register (SR) filled with
bits you can then shift out 8 bits as fast as your FPGA runs. However, the hard part is going to come
when you finish shifting them out of your SR and you have to re- load it. In that case your bit_shift FSM
will have to tell the USB_read FSM to read in the next byte, and it may have to wait for a while. This
time you spend waiting will limit your performance. However, if you were to have a second register that
fed the shift register you could re- load that while you were in the processes of shifting out bits, and
thereby significantly improve your performance. One could imagine adding more and more of these
registers, but at some point you will simply be limited by the rate at which the computer can send out
bytes in the first place.

FX2 Chip

(via the
async_usb_fs

m module)

USB_read
FSM USB Data Out

USB Read

SR Load

bit_shift
FSM

SR Shift

Ready for
next byte

FX2 Chip

(via the
async_usb_fs

m module)

USB_read
FSM USB Data Out

USB Read

Load Byte

bit_shift
FSM

SR Shift

Ready for
next byte

8-bit Register

SR Load

EE109 Lab 1: USB Serial UART

 Page 4 of 4

Sample Files Overview
 A rather thorough description of the sample files for Part A can be found in the tutorial.

Performance
 To evaluate performance you will experimentally determine the maximum rate at which you can
send out 2048 transistions in a row without an error for both Parts A and Part B while only sending 1
byte per USB packet. (Remember that Part A only uses one bit of the byte so you will be sending 8
transitions in 1 byte for Part B in this comparison vs. only 1 for Part A.) You will then compare this to
the performance if you send out 2, 4, 32, and 128 bytes at a time (or 16, 32, 256, and 1024 transitions)
for Part B. Please graph the results in terms of Mb/s, where each transition represents 1 bit. Note that
you should try varying the SR counter for the different numbers of bytes you send at once, but you do
not have to adjust it perfectly. Please do specify the shift rate (in MHz) that gave you the highest
throughput for each one on your graph.

Additional Write Up Material
 In addition to the standard write up (for Part B only) as specified on the course web page you
should answer the following questions from your experience with Lab 1.

 1. Please explain all warnings the Xilinx tools gave you in synthesizing and implementing Part
B. You can explain them briefly, but you should make it clear why each one is acceptable.

 2. What was the limiting factor in how quickly you could send bits with Part A? What was the
minimum speed you could request and what was the minimum average speed you got? What caused this
discrepancy? (i.e., what was taking up the time?)

 3. What are you effectively building if you add many extra registers to Part B? If you let the
number of such registers increase to a large number, what would limit the maximum output rate you
could obtain over a short period of time? What would limit the maximum output rate you could obtain
over a long period of time?

 4. Include a screenshot of your system when it re- loads the shift register from ChipScope. Please
carefully annotate this screenshot so we can easily tell exactly what is going on.

